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1. Systems of Linear
Equations

1.1. Addition is easy, multiplication is difficult

In this first chapter, we will deal with systems of linear equations and related
topics. Therefore, the first question we should ask is what we mean by linear
equations and why we care about them. We shall start with some small
examples.

A linear equation in one variable x is an equation of the form ax = b where
a and b are some scalars. In this chapter, we will choose a and b to be real
numbers but scalars may come from different number systems, too. A linear
equation in two variables looks like ax + by = c. As you very well know
this equation defines a line in the plane. Similarly, a linear equation in three
variables x, y, z looks like ax + by + cz = d where a, b, c, d are scalars.

From the examples, one may guess that a linear equation in variables x1, . . . , xn

is an equation involving these variables where one is only allowed the two
operations: addition and scalar multiplication. We are not allowed to have
x1x2 or x2

3 or x2
1x

3
2. In the rest of this section, I will try to argue why we only

allow these operations.

Exercise 1.1.1. What is 236 + 457? Compute by hand and keep track of
how long it takes you to do this computation.

Exercise 1.1.2. What is 236 × 457? Compute by hand and keep track of
how long it takes you to do this computation.

From these easy exercises, it is easy to convince yourself that addition is a
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10 CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS

much easier operation than multiplication in general.

Extra Exercise 1.1.3. Find places in mathematics where multiplication is
easier than addition.

The next attempt to convince you is from geometry. We have said that a
linear equation in two variables define a line in the plane and if you have
taken a course in multivariable calculus you know that a linear equation in
three variables gives you a plane in the three dimensional space. The purpose
of the next exercise is to show you that adding a term which is not linear
makes the geometric object much more complicated very very quickly.

Exercise 1.1.4. For each of the following equations, sketch the set of points
satisfying the equation.

1. 3x = 3

2. 2x + y = 4

3. xy + y2 = 1

4. x + xy3 = 3

5. x + y + z2 = 7.

From the first two exercises, you also see that allowing scalar multiplication
is not making things much more complicated both in terms of algebraic
computations and geometric picture. The equation x + y = 4 defines a line
but the equation 2x + y = 4 also defines a line. It is not too complicated.
But what does the third equation define, how about the fourth one? The
point is that they define something more complicated than a line.

The next attempt to convince you is from calculus. Consider two differen-
tiable functions f and g. For example, let f(x) = cos x and g(x) = x2.

Exercise 1.1.5. 1. Compute the derivative of 2f + g.

2. Compute the derivative of fg.

The point of this exercise is to remind you that addition and scalar multipli-
cation operations are usually not that bad but the product rule for derivatives
is much more complicated.

You can convince yourself that the same holds integration.
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Exercise 1.1.6. Find antiderivatives for 2f + g and fg.

Okay, after all this discussion, let’s say we are convinced that addition is
easier than multiplication. What does this mean? Are we doing linear algebra
just because it is easy? Well, of course the answer is not yes. It is easy but also
it gives you a lot of information. Remember again from your calculus class
that differentiation gives you the best linear approximation of your function
at a given point. This loses you a lot of information, yes. But it also keeps the
information about important things such as increasing/decreasing behaviour
of the function. Looking at a linear approximation is easy and useful.

1.2. Systems of linear equations

In this section, we are going to introduce the main character of our course:
a system of linear equations.

Definition 1.2.1. A system of linear equations with m equations and n
variables is a system of equations

a11x1 + . . . + a1nxn = b1
...

...
...

...
...

...

am1x1 + . . . + amnxn = bm

with n variables x1, . . . , xn appearing in m equations.

As an example, let us consider

2x + 3y + 4z = 9

5x + 2y + 4z = 11

which is a system of 2 equations in three variables. We say that a triple
(a, b, c) solves this system or is a solution for this system if

2a + 3b + 4c = 9

5a + 2b + 4c = 11.

That is, if (a, b, c) satisfies all the equations in the system, we say that it
satisfies the system. In the future, we will ask “find the solution set to a
system” by which we will mean “find all the solutions to a system”.
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Exercise 1.2.2. Verify that (1, 1, 1) is a solution for the example system.

Throughout this section, we will make a couple important observations. We
will make these observations through the example. However, these obser-
vations will hold true for all systems of linear equations. Recall that our
running example is

2x + 3y + 4z = 9

5x + 2y + 4z = 11.

Suppose that we have a solution (a, b, c) for this system. Recall that this
means 2a+3b+4c = 9 and 5a+2b+4c = 11. Therefore, we must have

(2a + 3b + 4c) + (5a + 2b + 4c) = 9 + 11 = 20

which gives us

7a + 5b + 8c = 20.

In other words, (a, b, c) is a solution to 7x+5y+8z = 20. If you were following
closely, we just showed that if (a, b, c) is a solution to 2x + 3y + 4z = 9 and
5x+2y+4z = 11, then it is also a solution to the equation 7x+5y+8z = 20
which is the sum of the two equations. This was our first observation: if we
have a solution to a system of two equations, that solution also is a solution
for the sum of the two equations.

Exercise 1.2.3. Verify that (1, 1, 1) is a solution to 7x + 5y + 8z = 20.

Our second observation is simpler than this. Consider 2x + 3y + 4z = 9 and
4x+ 6y + 8z = 18. You must have already realized that the second equation
is just twice the first equation. If (a, b, c) is a solution to the first equation,
we have 2a + 3b + 4c = 9 and therefore

2(2a + 3b + 4c) = 2× 9

which gives us

4a + 6b + 8c = 18.

Thus, (a, b, c) satisfies 4x + 6y + 8z = 18. Therefore, if we have a solution
for an equation, it is a solution for all scalar multiples for the same equation.
(Note that 2 here was arbitrary, the same argument would hold for 3 or 5 or
any k ∈ R.)
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Exercise 1.2.4. Verify that (1, 1, 1) is a solution for 4x + 6y + 8z = 18.

Exercise 1.2.5. Using ideas similar to above, write a convincing paragraph
showing that if you have a solution for a system of two equations E1 and E2,
then it is also a solution for kE1 + lE2 for any choice of k and l.

Now, if you were able to solve this exercise, then you should be convinced
that the two systems

2x + 3y + 4z = 9

5x + 2y + 4z = 11

and

2x + 3y + 4z = 9

9x + 8y + 12z = 29

have the same solution set. That is, any solution to the first system is also
a solution for the second system and any solution to the second system is
also a solution for the first system. Let us explain this a little bit further.
Let us put E1 and E2 to be the first and second equations in the first system
and pick a solution (a, b, c) to the first system. Then, by definition we know
that (a, b, c) is a solution to E1 and by the exercise we know that (a, b, c) is a
solution to 2E1+E2. Note that E1 and 2E1+E2 are the two equations in the
second system. Therefore, (a, b, c) satisfy the second system as well!

Now, let us name F1 and F2 the equations in the second system so that
we have F1 = E1 and F2 = 2E1 + E2. Note that from here, we see that
E2 = F2 − 2F1. Therefore, if we have a solution to the second system, again
by the same reasoning, it is a solution to the first system!

Exercise 1.2.6. Make sure you understand the previous two paragraphs.
This is essential to our algorithm for solving systems of linear equations.

Of course, the previous example seemed like a useless thing to do. We took
a system of two equations, manipulated a little bit and we ended up with
some system which does not look any better. But in future we will make
this manipulation in a clever way so that we end up in a simpler system to
solve.
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Exercise 1.2.7. Which of the following two systems is simpler to solve?

1.

1x + 3y + 2z = 0

2x + 3y + 1z = 0

3x + 1y + 3z = 0

2.

1x + 0y + 0z = 0

0x + 1y + 0z = 0

0x + 0y + 1z = 0

We make the habit of not writing the variable at all if the coefficient is zero.
Therefore, the second system in the exercise can be written as

x = 0

y = 0

z = 0.

Note that there is nothing you need to do here to solve the system! The
system is already in the simplest form it can be! There is only one solution
and it is (0, 0, 0). Our purpose is going to be to bring every system into a
simpler system like this. We will see that it is not always going to be as simple
as this one but we will try our best to bring it to its simplest form.

1.3. Consistent and inconsistent systems

1.4. Coefficient matrix and row operations

1.5. Echelon form



2. Different Languages

In Chapter 1, we have seen properties of systems of linear equations and how
to solve them. In this chapter, we are going to be interested in representing
questions about systems of linear equations in different languages. The pri-
mary purpose of this chapter is to introduce new vocabulary and showcase
the importance of language.

2.1. Vector equations

In Chapter 1, we have discussed that the names of the variables do not play
a role in our theory. If our variables are called x, y, z or x1, x2, x3 or y1, y2, y3,
it does not matter. We will do the same thing to solve the system: consider
the coefficient matrix and reduce it to an echelon form. We said that what
matters is the coefficients.

In this section, we are going to see a different representation of a system of
linear equations. Namely, a vector representation.

Definition 2.1.1. A (column) vector in Rn is an ordered n-tuple of real
numbers.

Given a system of linear equations

a11x1 + . . . + a1nxn = b1
...

...
...

...
...

...

am1x1 + . . . + amnxn = bm

we can group the coefficients of each variable and represent this system
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16 CHAPTER 2. DIFFERENT LANGUAGES

as a11...
am1

x1 + . . . +

a1n...
amn

xn =

 b1...
bm


Note that the coefficients formed vectors in Rm in this case. If we like, we
can rearrange the same representation as

x1

a11...
am1

+ . . . + xn

a1n...
amn

 =

 b1...
bm

 .

We can also give names to our vectors! Let us put

v1 =

a11...
am1

 , . . . , vn =

a1n...
amn

 .

Then, we get that our system of linear equations can be written as

x1v1 + . . . + xnvn = b

where

b =

 b1...
bm

 .

Again, recall that our purpose is to rewrite things in different format. Sum-
marizing our discussion, we see that a system of linear equations

a11x1 + . . . + a1nxn = b1
...

...
...

...
...

...

am1x1 + . . . + amnxn = bm

can also be represented as a vector equation

x1v1 + . . . + xnvn = b.
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Exercise 2.1.2. What are some advantages of this representation at a first
glance?

Example 2.1.3. Consider a system of linear equations

2x + 4y + 5z = 0

6x + 2y + 3z = 0

2x + 3y + 4z = 0.

Then the corresponding vector equation is

x

2
6
2

+ y

4
2
3

+ z

5
3
4

 =

0
0
0

 .

Now, there are some remarks that I have to make.

Remark 2.1.4. Do you realize that the “role” of the x, y, z has changed? At
least it looks like the role has changed. In the first representation they look
like they are the variables whereas in the second representation they look like
they are coefficients in front of our vectors. Think this in terms of our main
goal: writing things in a different language. With a simple rewriting trick,
we managed to change our point of view. This is a very common and useful
thing to do in mathematics.

Remark 2.1.5. Some people like to put arrows on top their vectors. I do not
prefer to do this. I believe that if we do enough practice, we can understand
from the context what letter represents a scalar and what vector represents
a vector.

Remark 2.1.6. Continuing from the previous remark, I will represent the
zero vector whose entries all zeroes by 0. So, the vector equation in the
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previous example will be written as

x

2
6
2

+ y

4
2
3

+ z

5
3
4

 = 0.

It may take some time to get used to this but from the context, you should
be able to understand this 0 is the zero vector in R3.

Remark 2.1.7. The geometry of vectors in R2 and R3 is important and we
will revisit this from time to time. However, it is important to also change
your point of view from a geometric object to a purely algebraic object. At
this point, we will want to see a vector in R3 as a list of three real numbers
as opposed to a point (or an arrow) in the three dimensional space.

2.2. Span of a set of vectors

From time to time, we will call Rn the Euclidean space. While Rn is the set
of all vectors with n entries, it is not only a set. It has an algebraic structure
on it which is the single most important fact we care about in linear algebra.
You need to know three things:

1. Saying two vectors are equal is the same thing as saying all entries of
the two vectors are the same.

2. You can add two vectors and this is done coordinatewise.

3. You can also multiply a vector by a scalar and this is also done coordi-
natewise.

Remark 2.2.1. We do not have a multiplicative structure on Rn in linear
algebra. We only care about addition and scalar multiplication. Does this
remind you of the first lecture?
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Example 2.2.2. Let us put

v =

1
2
3

 , w =

5
1
2

 .

Then,

v + w =

1
2
3

+

5
1
2

 =

1 + 5
2 + 1
3 + 2

 =

6
3
5

 .

This is what we mean by coordinatewise addition.

Now, we will talk about a similar phenomenon which we will see in the future
in more detail. The answer to this question is very easy. What I want you to
focus on is: why did I ask you this, how is it related to our discussion?

Exercise 2.2.3. Consider two polynomials: f = 2+3t+t2 and g = 1+2t+4t2.

1. What is 2f?

2. What is f + g?

The addition and scalar multiplication satisfies 8 rules that we care about:

1. For every three vectors u, v, w, we have (u+v) +w = u+ (v+w). This
rule is called associativity and it basically tells us that we do not need
parantheses when we do addition: if I give you u + v + w, you do not
have to ask me ”Should I do u + v first or v + w first?”

2. We have a zero vector. This is the vector that consists of all zeroes and
we denote it by 0 as we have seen in the previous section. It has the
property that v + 0 = v for every vector v.

3. We have additive inverses. This works like the negative of a number.

if v =

[
1
2

]
then − v =

[
−1
−2

]
.

For every vector v, there is a vector −v such that v + (−v) = 0.

4. For every two vectors u, v, we have u + v = v + u. This is called
commutativity.
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Up to this point, we only dealt with rules about addition. Now, we will add
rules about scalar multiplication and how it behaves with addition.

5. If you multiply any vector with the scalar 1, nothing changes. We have
1v = v for any vector v.

6. You can multiply two scalars with each other and then do scalar mul-
tiplication or you can do scalar multiplication twice and this does not
change the result: for any two scalars a, b and any vector v, we have
(ab)v = a(bv).

7. We have a distrubition rule: if a, b are scalars and v is a vector, then
(a + b)v = av + bv.

8. We have another distrubition rule: if a is a scalar and u, v are vectors,
then a(u + v) = au + av.

Exercise 2.2.4. Choose some scalars and choose some vectors in R3. Verify
these 8 rules.

Exercise 2.2.5. Appreciate associativity by remembering rock, paper, scis-
sors. Define an operation on these by the winner of a match. (Example:
rock*paper=paper).

1. Compute (rock*paper)*scissors.

2. Compute rock*(paper*scissors).

Is this a commutative operation?

Now, we will make some observations.

If we start with a vector v, using the two operations we have, which vectors
can I create? Well, I have addition. So, I can do v + v. But

v + v = 1v + 1v = (1 + 1)v = 2v.

So, I ended up with a multiple of v, when I tried to add things. Let’s try
v + 2v. We have

v + 2v = 1v + 2v = (1 + 2)v = 3v.
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Exercise 2.2.6. 1. Which of the 8 rules am I using when I do these?

2. Convince yourself that starting from a single vector, the allowed two
operations give me multiples of v.

Next, let us start with a vector v and another vector w. I can create multiples
of v and w as before and I can add them. So, starting from v and w, I can
create 2v + 3w for example. I can multiply this with 2 to get 2(2v + 3w)
but

2(2v + 3w) = 4v + 6w

(which rule did we use here?) and it is of the form av + bw again. We can
try to add two things of this form:

(2v + 3w) + (v + 2w) = 2v + 3w + v + 2w = 2v + v + 3w + 2w3v + 5w.

You see what is happening?

Exercise 2.2.7. Convince yourself that starting from two vectors v and w

1. you can create all vectors of the form av + bw where a, b are scalars,

2. you can not create any other vectors.

Exercise 2.2.8. Convince yourself that starting from three vectors u, v and
w

1. you can create all vectors of the form au + bv + cw where a, b, c are
scalars,

2. you can not create any other vectors.

We are now ready to make some definitions.

Definition 2.2.9. Let v1, . . . , vn be vectors.

1. A linear combination of v1, . . . , vn is a vector you can create using the
two operations starting from these vectors: That is, a linear combi-
nation is a vector of the form c1v1 + . . . + cnvn where c1, . . . , cn are
scalars.
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2. The span of v1, . . . , vn is the set of all vectors you can create using the
two operations starting from these vectors. In other words, it is the set
of all linear combinations of these vectors.

We will now go back to our starting point. Recall from the previous section
that a system of equations

a11x1 + . . . + a1nxn = b1
...

...
...

...
...

...

am1x1 + . . . + amnxn = bm

can also be represented as a vector equation

x1v1 + . . . + xnvn = b.

Then, the following sentences say the same thing in a different language.

1. The system

a11x1 + . . . + a1nxn = b1
...

...
...

...
...

...

am1x1 + . . . + amnxn = bm

is consistent.

2. The system

a11x1 + . . . + a1nxn = b1
...

...
...

...
...

...

am1x1 + . . . + amnxn = bm

has a solution.

3. There are numbers x1, . . . , xn such that the equations

a11x1 + . . . + a1nxn = b1
...

...
...

...
...

...

am1x1 + . . . + amnxn = bm

hold true.
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4. There are numbers x1, . . . , xn such that

x1v1 + . . . + xnvn = b.

5. The vector b is a linear combination of v1, . . . , vn.

6. The vector b is in the span of v1, . . . , vn.

There will be times where either of these six sentences will be more useful.
In the next section, we will see another language.

2.3. Matrix-vector equations

We know that if we have a system of linear equations

a11x1 + . . . + a1nxn = b1
...

...
...

...
...

...

am1x1 + . . . + amnxn = bm

then its coefficient matrix is a11 . . . a1n
...

. . .
...

am1 . . . amn

 .

Let us call this matrix A. Now, in this we captured the coefficients. On the
left hand side, we also have variables x1, . . . , xn. Let us put them together
as a column vector x1

...
xn


and let us call this vector x. Note that I understand from the context that x
is a vector. I do not like using different notation for vectors, as I previously
mentioned, and unless it is not at all obvious from the context, I will not
make an effort. Then, the matrix-vector equation representing our system of
linear equations is simply denoted by

Ax = b.
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Exercise 2.3.1. What do you think? You just used three letters and one
equality sign to talk about the same thing!

Using only three letters is not the only benefit of this representation but I
will not go into details at this point. Let us finish this section quickly by
rewriting things in different language.

1. The system

a11x1 + . . . + a1nxn = b1
...

...
...

...
...

...

am1x1 + . . . + amnxn = bm

is consistent.

2. There are x1, . . . , xn such that the equations

a11x1 + . . . + a1nxn = b1
...

...
...

...
...

...

am1x1 + . . . + amnxn = bm

hold true.

3. There is a vector x such that the matrix-vector equation Ax = b holds.

4. The equation Ax = b has a solution.

5. The equation x1v1 + . . . + xnvn = b has a solution.

6. The vector b is in the span of v1, . . . , vn.

7. The vector b is in the span of the columns of A.

2.4. Linear transformations

Before starting this section, make sure that you know what a function is.
When I was a teaching assistant during my PhD for an engineering linear
algebra course, we had weekly meetings with a head TA who helped us keep
organized through different tutorial sections. I will never forget that this head
TA gave us the following hint: “Oh, you can check if a linear transformation is
onto like you do with functions” to which we responded “Umm, yes, because
a linear transformation is a function?”. This shocked our head TA and their
response was “but how do you check if it satisfies the vertical line test?”.
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Exercise 2.4.1. Make sure that you know what a function is. I would be
happy to chat with you about this and if I have more time, I will add an
appendix to the end of these notes.

Now consider the system

2x + 3y + 2z = 14

3x + 2y + 4z = 19.

Exercise 2.4.2. Verify that x = 1, y = 2, z = 3 is a solution to this system.

If we want to write this system as a matrix-vector equation, we get[
2 3 2
3 2 4

]xy
z

 =

[
14
19

]
.

And the fact that x = 1, y = 2, z = 3 is a solution to this system means we
have an equality [

2 3 2
3 2 4

]1
2
3

 =

[
14
19

]
.

This, we see that this matrix takes/transforms/sends/maps the vector1
2
3


to the vector [

14
19

]
.

This is the first thing I want you to understand. Now, the second thing is
something that looks trivial but is important. You know that two vectors are
equal if they have the same entries. We talked about this in the first section
of this chapter. So, combining the system of equations and the matrix-vector
equation, we have that[

2 3 2
3 2 4

]xy
z

 =

[
14
19

]
=

[
2x + 3y + 2z
3x + 2y + 4z

]
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and forgetting the vector in the middle, we get the equality[
2 3 2
3 2 4

]xy
z

 =

[
2x + 3y + 2z
3x + 2y + 4z

]
.

You see what happened? Our matrix transforms/sends/takes/maps a vec-
tor xy

z


that lives in R3 to [

2x + 3y + 2z
3x + 2y + 4z

]
that lives in R2. In other words, this matrix defines a function from R3 to
R2! Let us denote this function by f . Then, we say f : R3 → R2 is a function
from R3 to R2 and it is given by the rule

f

xy
z

 =

[
2x + 3y + 2z
3x + 2y + 4z

]
.

Exercise 2.4.3. Now, let us put

u =

1
0
2

 , v =

2
5
1


and let us take the function f from above.

1. Compute f(u) and f(v).

2. Compute f(u) + f(v).

3. Compute u + v.

4. Compute f(u + v).

5. Observe that f(u) + f(v) = f(u + v). That is, it does not matter if
you apply the function to u and v first (the first item) and then add
(the second item) OR if you first add u and v (the third item) and then
apply the function (the fourth item).
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6. Compute 2f(u).

7. Compute 2u.

8. Compute f(2u).

9. Observe that 2f(u) = f(2u). That is, it does not matter if you first
apply f to u and then multiply the result by 2 OR if you first multiply
u by 2 and then apply f .

10. Now, choose different u, v and replace 2 with another number and re-
peat. You will see that the two observations you made are independent
of your choice. It works for all choices of u, v and scalar.

Recall that we do have a structure on our sets of vectors. We can add and
multiply with scalars. These operations are important to us and we want
functions to behave well with respect to these structures.

Definition 2.4.4. Let f : Rn → Rm be a function.

1. If we have

f(u + v) = f(u) + f(v)

for every two vectors u and v, we say that f respects addition.

2. If we have

f(cv) = cf(v)

for every scalar c and every vector v, we say that f respects scalar
multiplication.

3. We say that f is a linear function or linear map or linear transformation
if it respects both structures.

You have already seen an example of a linear transformation. Now, I will
give you a non-example.
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Example 2.4.5. The function f : R2 → R3 defined by the rule

f

[
x
y

]
=

xyx
y


is not a linear function. It does not respect scalar multiplication: indeed, we
have

3f

[
2
3

]
= 3

6
2
3

 =

18
6
9

 6=
54

6
9

 = f

[
6
9

]
=

Example 2.4.6. Let A be an m × n matrix. Then, the function f : Rm →
Rn defined by the rule f(v) = Av is a linear transformation. You already
convinced yourself that this is true for

A =

[
2 3 2
3 2 4

]
in the exercise before the definition. The same arguments work in general to
prove this more general statement.

Definition 2.4.7. Let A and B be two sets and f : A → B be a function.
Then, an element b ∈ B is said to be in the image of f if there is an a ∈ A
such that f(a) = b. The set of all elements in B consisting of all elements
which are in the image of f is called the image of f . So,

im(f) = {b ∈ B : f(a) = b for some a ∈ A}.

Now, it is time for more observations. These are some crucial observations
which will be very helpful in the future.

Exercise 2.4.8. Decide whether each of the following statements is true or
false.
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1. We can write 2
3
4

 = 2

1
0
0

+ 3

0
1
0

+ 4

0
0
1


2. We can write ab

c

 = a

1
0
0

+ b

0
1
0

+ c

0
0
1


3. If ei ∈ Rn denotes the vector which has a 1 in the ithe coordinate and

0 in other coordinates, we can writex1
...
xn

 = x1e1 + . . . + xnen

4. The vector space Rn is spanned by {e1, . . . , en}.

Now, in the definition of a linear transformation we said a linear function f
respects addition and scalar multiplication. But then, it respects all linear
combinations, too as one can easily see that

f(au + bv) = f(au) + f(bv) = af(u) + bf(v).

By the way, all four statements in the previous exercise are true. Then, using
the fact that a linear mapping takes linear combinations to linear combina-
tions and the item number 3 in the exercise, we get for all

v =

x1
...
xn


we can compute

f(v) = f(x1e1 + . . . + xnen) = x1f(e1) + . . . + xnf(en).
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Therefore, if we have a linear transformation f : Rn → Rm, then we have

w ∈ imf ⇐⇒ there is a v ∈ V such that f(v) = w

⇐⇒ there are x1, . . . , xn such that f(x1e1 + . . . + xnen) = w

⇐⇒ there are x1, . . . , xn such that w = x1f(e1) + . . . + xnf(en)

⇐⇒ w ∈ span{f(e1), . . . , f(en)}

Therefore,

imf = span{f(e1), . . . , f(en)}.

Example 2.4.9. Consider the linear transformation f : R2 → R3 defined by
the rule

f

[
x
y

]
=

2x + y
x + 2y
x− y

 .

Then, our discussion above yields

imf = span


2

1
1

 ,

 1
2
−1

 .

We are almost ready to tie things up. You have seen that the value of
a linear function is determined by its action on the standard basis vectors
e1, . . . , en.

We will now see what an m × n matrix does to these vectors. Recall that
if

A =

a11 . . . a1n
...

. . .
...

am1 . . . amn

 and x =

x1
...
xn


then, we have

Ax =

 a11x1 + . . . + a1nxn
...

am1x1 + . . . + amnxn


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from our discussion in the previous section. The following exercise is cru-
cial.

Exercise 2.4.10. Show that if A is an m×n matrix, then Ae1 is equal to the
first column of the matrix, Ae2 is equal to the second column of the matrix
and so on.

Ok, we are about to finish the discussion. Let us consider a linear transfor-
mation f : Rn → Rm and let us compute f(e1), . . . , f(en). Note that these are
vectors in Rm. Consider the matrix A whose columns are f(e1), . . . , f(en).

Theorem 2.4.11. For every v ∈ V , we have f(v) = Av.

Exercise 2.4.12. By summarizing the discussion in this section, prove the
theorem.

Definition 2.4.13. If f and A are as in the theorem, we say that A is the
matrix of f (with respect to the standard basis).

Remark 2.4.14. At the beginning of this section, we said that multiplying
by a matrix is a linear transformation. We now concluded that every linear
transformation can be represented as multiplication by a matrix.

We will end this chapter by our favorite activity: writing things in a different
language. Let us consider the system of linear equations

a11x1 + . . . + a1nxn = b1
...

...
...

...
...

...

am1x1 + . . . + amnxn = bm

and call it SYS. Let us put

A =

a11 . . . a1n
...

. . .
...

am1 . . . amn


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as the coefficient matrix and consider the linear transformation f : Rn → Rm

given by the rule f(v) = Av. Then, the following statement are equiva-
lent.

1. SYS is consistent.

2. The matrix-vector equation Ax = b has a solution.

3. The vector b is in the span of the columns of A.

4. The vector b is a linear combination of columns of A.

5. The vector b is in the image of f .

6. The vector b is spanned by f(e1), . . . , f(en).



3. Homogeneous systems

Let us start quickly with a definition and leave the motivation for later.

Definition 3.0.1. A system of linear equations is called a homogeneous
system if the corresponding matrix-vector equation is of the form Ax = 0.
That is, if the right hand side of the system has b1 = . . . , bm = 0.

The obvious nice thing about a homogeneous system is that it is always
consistent. Indeed, we always have the trivial solution x1 = . . . = xn = 0 to
a homogeneous system.

Exercise 3.0.2. Check that x = y = z = 0 is a solution to the system

3x + 4y + 2z = 0

5x + 3y + 6z = 0

2x + 5y + 4z = 0.

3.1. Why care about homogeneous systems

From now on, instead of writing systems of linear equations, I am going to
use the corresponding matrix-vector equations and use the term system of
linear equations vaguely.

Consider a homogeneous system of linear equations Ax = b. Let u, v be two
solutions to this equation so that we have Au = b and Av = b. Then, we see
that

Au− Av = b− b = 0

33
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or in other words, u − v is a solution to the homogeneous equation Ax = 0
because A(u − v) = Au − Av = 0. On the other hand, if w is a solution to
the homogeneous equation Ax = 0 and v is again a solution to the equation
Ax = b, then we get that v + w is also a solution to Ax = b since

A(v + w) = Av + Aw = b + 0 = b.

I used too many “solution”s and “equations” in the above paragraph. Make
sure that you read it again and actually understand what I said.

Theorem 3.1.1. Consider an equation Ax = b and suppose that you know
one solution v to this equation. Then, every other solution to this equation
is of the form v + w where w is a solution to Ax = 0.

Suppose that you go to an electronic store and they have two machines: the
first machine can solve every system of linear equations (if consistent) and
it is expensive; the second machine can solve only homogeneous systems of
linear equations and it is cheaper. You want to solve a system of the form
Ax = b. You can by hand find a single solution, make the second machine do
the work to find the solution set to the homogeneous equation Ax = 0, and
voilà, you have all the solutions to the Ax = b without buying the expensive
machine. So, systems of linear equations work like keys.

3.2. An algebraic structure

We are slowly getting used to linear algebra. In this section, we are going to
see its essence.

From day 1, we said that what we care about is addition and scalar mul-
tiplication. This is the structure we care about. We will now see that the
solution set of a homogeneous system inherits this structure. What do I
mean by this?

Theorem 3.2.1. Let Ax = 0 be a homogeneous system of equations.

1. The zero vector is a solution to this system.

2. If v, w are solutions to this system, then v+w is also a solution to this
system.

3. If v is a solution to this system and if c is a scalar, then cv is also a
solution to this system.
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The proof of this theorem is just a summary of our previous discussions
to together with an understanding of the definitions. I leave it as an exer-
cise.

Exercise 3.2.2. Write a proof to theorem.

Remark 3.2.3. The theorem tells us that we can do algebra inside the
solution set of a homogenous system of linear equations. We can add things,
we can multiply things with scalars, we have a zero vector. Basically, every
rule that we listed for addition and scalar multiplication in Section 2 of
Chapter 2 work for the solution set of a homogeneous system.

Exercise 3.2.4. Take a moment, go outside, do some meditation or some-
thing and appreciate this remark.

3.3. Linear independence

We have seen that a homogeneous system is always consistent because x =
0 is always a solution to an equation Ax = 0. But we might have more
solutions, maybe? From the first chapter, you know that you can check
this by row reducing the coefficient matrix and seeing if you have any free
variables.

Recall from the previous chapter that we have access to different languages
to talk about the same thing. This time, I want to talk about things in terms
of vector equations.

So, suppose that we have homogeneous system of linear equations and the
corresponding vector equation is

c1v1 + . . . + cnvn = 0.

Definition 3.3.1. We say that the vectors v1, . . . , vn are linearly dependent
if there is a nonzero solution to this system. We say that they are linearly
independent if there is no other solution than the trivial solution.

So, the game is simple. Again, the only possibly confusing part is to learn the
new language, new terminology. You want to see if a set of vectors is linearly
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dependent or independent. What do you do? You consider the corresponding
system of linear equations, better yet you consider the coefficient matrix of
that system. Well, if you are comfortable with Chapter 2 and can translate
between different languages easily, you immediately understand that what
you do is to take these vectors and put them as columns in a matrix. Call
this matrix A and reduce A to its echelon form: if you observe existence of
free variables, that is if in the echelon form not every column has a leading
entry, then your system has infinitely many solutions and therefore your
vectors are linearly independent. Otherwise, that is if every column is a
pivot column, then there is only one solution to this system and it is the
trivial solution.

Let us next discuss the name a little bit. Where does the term independence
come from?

Suppose that you have some vectors v1, . . . , vn. Then,

v1, . . . vn are linearly dependent.

m

there is a nontrivial solution to c1v1 + . . . + cnvn = 0

m

there are c1, . . . , cn (at least one of them is nonzero) such that
c1v1 + . . . + cnvn = 0

(Let’s say that c1 6= 0. If it is zero, find the nonzero ci and do the same
thing to it).

m

there are c2, . . . , cn such that v1 +
c2
c1
v2 + . . .+

cn
c1
vn = 0. (Here I just divided

by the scalar c1. I am allowed to do this because we assumed c1 6= 0).)

m

there are c2, . . . , cn such that v1 = −c2
c1
v2 − . . .− cn

c1
vn.

m

v1 is a linear combination of v2, . . . , vn.

So, we can conclude with a theorem.
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Theorem 3.3.2. Vectors v1, . . . , vn are linearly dependent if and only if one
of the vectors is in the span of the remaining ones. Equivalently, they are
linearly independent if and only if none of the vectors can be written as a
linear combination of the remaining ones.

Exercise 3.3.3. Show that for any two vectors u, v, the set {u, v, u + v} is
linearly dependent.

Remark 3.3.4. Notice the language: sometimes I am saying that vectors
are linearly independent and sometimes I am saying that the set of vectors
is linearly independent. Both are correct uses.

3.4. Nullspace and kernel

Remember from the previous chapter that we have several different languages
to express the same thing: systems of linear equations, vector equations,
matrix-vector equations and linear functions. In this section, we will con-
tinue the theme of this chapter in the language of matrices and linear trans-
formations. We start with a definition.

Definition 3.4.1. Let A be an m×n matrix and v be a vector in Rn. Then,
we say v is in the nullspace of A if Av = 0. The nullspace of A is the set of
all vectors v in Rn such that Av = 0. We denote the nullspace of A by nullA.

We have learned a new word. Let us see how it relates to what we already
know. Suppose that we have a homogeneous system

a11x1 + . . . + a1nxn = 0

...
...

...
...

...
...

am1x1 + . . . + amnxn = 0.

We know that we can represent it as a vector equation

x1v1 + . . . + xnvn = 0

or as a matrix vector equation

Ax = 0
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where the vectors vi’s consists of the coefficients of xi’s in the system, the
matrix A has vi’s as its columns and the vector x has entries xi’s.

Then, saying that xi’s form a solution to our homogeneous system is equiv-
alent to saying that x is in the nullspace of A.

Exercise 3.4.2. Make sure that you understand the previous sentence.

If you understood the previous sentence, then you can prove the following
theorem.

Theorem 3.4.3. Let A be an m× n matrix and v1, . . . , vn be columns of A.
Then, saying that v1, . . . , vn are linearly independent is equivalent to saying
that the nullspace of A only contains the zero vector (nullA = {0}).

Exercise 3.4.4. Prove the theorem. (Really, just write a couple paragraphs
summarizing previous discussions to conclude the theorem).

Exercise 3.4.5. Read the paragraph after Definition 3.3.1, look at the above
theorem, remember your knowledge about row-reducing and understand how
these relate to each other.

In the previous chapter, you have seen that there is a correspondence between
m×n matrices and linear functions from Rn to Rm. Now, let us say everything
about homogeneous systems in terms of linear functions.

Definition 3.4.6. Let f : Rn → Rm be a linear transformation. Then, we
say that a vector v ∈ Rn is in the kernel of f if f(v) = 0. We call the set of
all v ∈ Rn with the property f(v) = 0 the kernel of f . We denote the kernel
of f by ker f .

Now, you should be able to connect all the dots.

Exercise 3.4.7. Show that 0 is always in ker f for every linear function f
by following the following questions.

1. What is 0 + 0?
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2. Is it true that f(0 + 0) = f(0) + f(0)?

If you need more hints, let me know.

Now, we know that the kernel of a linear transformation always contains the
zero vector. What if this linear transformation is special and the kernel only
contains the zero vector and nothing else?

Exercise 3.4.8. Let f be a linear transformation and A be its matrix. Show
that the columns of v are linearly independent if and only if ker f = {0}.

Definition 3.4.9. Let A,B be two sets (not necessarily vector spaces). We
say that a function g : A → B is one-to-one or injective if g does not map
two different elements of A to the same element of B.

While this definition is more intuitive, it is easier to check injectivity as
follows: firstly, understand that the definition says g is injective if and only if
x 6= y implies g(x) 6= g(y). So, if the inputs are different, then the outputs are
different. We can rewrite this as if the outputs are the same, then the inputs
are the same. So, in practice, we use the following alternative definition.

Definition 3.4.10 (Alternative definition). We say that g : A→ B is injec-
tive if g(x) = g(y) implies x = y for every x, y ∈ A.

Now, let us consider linear functions between two vector spaces. Suppose
that I have a linear transformation f : Rn → Rm. Then,

f is one-to-one
m

for every u, v ∈ Rn, we have f(u) = f(v) implies u = v.
m

(Since we can do addition and subtraction in vectorspaces)
for every u, v ∈ Rn, we have f(u)− f(v) = 0 implies u− v = 0.

m
(Since f is linear)

for every u, v ∈ Rn, we have f(u− v) = 0 implies u− v = 0.
m

(Putting x = u− v)
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for every x ∈ Rn, we have f(x) = 0 implies x = 0.
m

ker f = {0}.

Theorem 3.4.11. Saying that a linear transformation f is one-to-one is
equivalent to saying that ker f = {0}.

Exercise 3.4.12. We already proved this theorem right above, the exercise
is to make sure you understand each step.

The following exercise is the essence of this entire chapter.

Exercise 3.4.13. Write an essay which talks about the relations between
the following concepts:

1. free variables in a system of linear equations,

2. linear independence of columns of a matrix,

3. one-to-oneness of a linear transformation.



4. Matrix Operations

At this point in the course, you are assumed to be more familiar with ma-
trices. In this chapter, you are going to see some algebraic structures on
the space of matrices. The first two structures are familiar: addition and
scalar multiplication. You will notice that the rules of addition and scalar
multiplication are also familiar. Then, you will see an additional structure:
multiplication.

4.1. Addition, scalar multiplication

These familiar operations of addition and scalar multiplication are defined
coordinatewise. You are going to explore these two operation through exer-
cises.

Exercise 4.1.1. Do CTRL-F (or your equivalent of the search function) and
find where we used the word coordinatewise before in the notes. Then, try
to understand what I mean by the above definition.

Exercise 4.1.2. Pick some 2× 3 matrices and add them. Pick some scalars
and perform scalar multiplication with some matrices. Familiarize yourself
with these operations.

Exercise 4.1.3. In Chapter 2, you have learned that the addition and scalar
multiplication on Rn satisfy 8 basic rules.

1. Go back and read those 8 rules.

2. Show that the same 8 rules hold for addition and scalar multiplication
of matrices!

41



42 CHAPTER 4. MATRIX OPERATIONS

4.2. Composition of linear functions and definition of
matrix multiplication

Before you start with this section, you need to go back and refresh your
knowledge from Chapter 2.

Exercise 4.2.1. Redo Exercise 2.4.10.

Exercise 2.4.10 and the discussion afterwards tell you that the columns of
the matrix of a linear transformation given by the images of the standard
basis vectors under the linear transformation.

Now, let us consider two linear transformations f : Rn → Rm and g : Rm →
Rn. Then, we can consider the composition g ◦ f .

Exercise 4.2.2. 1. Convince yourself that g ◦ f is a function from Rn to
Rk.

2. Convince yourself that g ◦ f is also linear.

Let B be the matrix of f . This means that for every v ∈ Rn, we have
f(v) = Bv. Note that B is an m× n matrix.

Similarly, let A be the matrix of g. This means that for every w ∈ Rm, we
have g(w) = Aw. Note that A is an k ×m matrix.

Now, since g ◦ f is also a linear transformation, it should also have a corre-
sponding matrix. We have

(g ◦ f)(v) = g(f(v)) = g(Bv) = A(Bv)

for every v ∈ Rn. Make sure that you understand this because it is the crucial
step. Up to this point, we only wrote down what we already know.

Definition 4.2.3. Let A,B, g, f be as above. The matrix product AB is the
matrix with the property (AB)v = A(Bv) = (g ◦ f)v for every v ∈ Rn. That
is, the product AB is the matrix of g ◦ f .

Exercise 4.2.4. Which one of the following is the correct size for AB ac-
cording to our discussion?
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(a) m× n

(b) m× k

(c) n×m

(d) n× k

(e) k ×m

(f) k × n

And why?

We made a conceptual definition. Now, let us investigate it from a more
computational point of view. This is why you were asked to redo Exercise
2.4.10 at the beginning of this section. We will compute the product AB by
computing each column of it.

According to Exercise 2.4.10, the first column of AB is equal to ABe1 where
e1 is the first standard basis vector. According to our conceptual definition
of matrix multiplication, we must have

ABe1 = A(Be1).

Again from Exercise 2.4.10, we do know that Be1 is the first column of B.
So,

ABe1 = A(first column of B).

However, you know from the section on matrix-vector equations how to mul-
tiply a matrix with a vector. So, you are done! Okay, too fast? Let’s see an
example.

Example 4.2.5. Let’s compute the first column of AB where

A =

[
2 3 4
1 2 3

]
and B =

1 2
5 4
6 2

 .

According to what we said above, the first column should be

ABe1 = A(Be1) =

[
2 3 4
1 2 3

]1 2
5 4
6 2

[1
0

] =

[
2 3 4
1 2 3

]1
5
6

 .
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And you know from our discussion in Chapter 2 on matrix-vector equations
that [

2 3 4
1 2 3

]1
5
6

 =

[
2× 1 + 3× 5 + 4× 6
1× 1 + 2× 5 + 3× 6

]
=

[
41
29

]
.

If you do not remember the discussion from Chapter 2, please go back and
read it. Do not just read this example without understanding, please.

We found the first column of the product by using the first standard basis
vector, we will use the second standard basis vector to find the second column.
That is, the second column of AB will be equal to ABe2.

Exercise 4.2.6. Consider the two matrices from the previous example. Show
that the second column of AB is[

2 3 4
1 2 3

]2
4
2


which is equal to [

24
16

]
.

Conclude that [
2 3 4
1 2 3

]1 2
5 4
6 2

 =

[
41 24
29 16

]
.

Let us play with this example a little bit more. Again, consider 41 which is
the first row first column entry of AB. How did we find it? If you look at
our computations, essentially what we did was

take the first row of A and the first column of B
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and multiply the entries one by one and add them up.

[
2 3 4
1 2 3

]1 2
5 4
6 2

 =

[
2× 1 + 3× 5 + 4× 6

]
.

Now, following the same ideas, we get the next theorem.

Theorem 4.2.7. Let A be an m × n matrix and B be an n × k matrix.
Then, AB is an m × k matrix whose ith row jth column entry is given by
multiplying the entries of ith row of A with entries of jth column of B and
adding them up.

Exercise 4.2.8. Convince yourself that this is what we did in the above
example and what we described in the above discussion.

Exercise 4.2.9. Illustrate the theorem in the previous example by filling
up the remaining three entries using this method and comparing with the
correct result.

Remark 4.2.10. Note that matrix multiplication takes two inputs: an m×n
matrix and an n× k matrix and the result is an m× k matrix. So, if we take
two n × n matrix, then their product is also an n × n matrix. So, matrix
multiplication defines an operation on the space of n× n matrices.

4.3. Properties of matrix multiplication

Matrix multiplication behaves like you would expect it to behave in many
ways and behaves like you would not expect it to behave in many other
ways.

Firstly, matrix multiplication is associative. That is, for any three matrices
A,B,C (of correct sizes so that we can actually perform the multiplication)
we have

A(BC) = (AB)C.

There are at least three ways to prove this:



46 CHAPTER 4. MATRIX OPERATIONS

1. You can say that matrix multiplication corresponds to composition of
linear functions and we know that composition is associative.

2. You can argue by finding the columns of both matrices by multiplying
them with standard bases vectors.

3. You can argue by computing ijth entry of both matrices.

I am not going to ask you to prove this rigorously because I do not think
that there is value in it. But I want you to think about all three ways until
you can convince yourself that you could write a rigorous proof if your life
depended on that.

Secondly, matrix multiplication distributes over addition. If A,B,C are three
matrices (of correct sizes so that operations make sense), then we have

A(B + C) = AB + AC

(A + B)C = AC + BC.

Example 4.3.1. Pick three randomly chosen matrices and verify the two
properties we have discussed.

Unfortunately, matrix multiplication is not commutative. That is, usually
we do not have AB = BA.

Exercise 4.3.2. Show that if A is a 2 × 3 matrix and B is a 3 × 4 matrix,
we can not have AB = BA. (Hint: has a silly reason).

Exercise 4.3.3. Let

A =

[
0 1
1 0

]
and B =

[
2 4
3 5

]
.

1. Compute AB. What is the action of A on B in this case?

2. Compute BA. What is the action of A on B in this case?

3. Is AB equal to BA?
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Remark 4.3.4. The next question is a very interesting question for me. Not
that the content of the question is very interesting but my experience with
student’s responses is. The question is very simple once you see what you
are supposed to be doing. But in order to see what you are supposed to be
doing, you need to start playing with the question. For a second, forget that
you are trying to solve the question. Just try to understand what is up with
the question. Once you understand the question, the answer will be in front
of you, anyways.

If you can not solve it, that’s okay. Contact me and we will figure it out
together.

Exercise 4.3.5. Find all matrices A such that AB = BA where B is the
matrix

B =

[
2 4
3 5

]
.

Now, one thing you would expect from multiplication is to have an identity
element. Indeed, in real numbers we do have an identity element, namely 1.
For every real number x, we have 1x = x. The question is: do we have this
in matrix multiplication? Can we find a matrix I such that for every matrix
A (of correct size) you have AI = A (or for every matrix B of correct size,
you have IB = B)?

You can approach this question in several different ways but I think the
cleanest way is to realize that the identity transformation id : Rn → Rn

defined by id(v) = v is a linear transformation. Note also that if f is any
function from Rm to Rn, we would have id ◦ f = f . Indeed the rule of id is
do nothing. You can apply f and stop OR you can apply f , then wait and
do nothing and then stop. The result will not change. So, the matrix we are
looking for is the matrix of the identity transformation with respect to the
standard basis. And do you remember how we find the matrix of a linear
map?

We should have the first column of I is Ie1 = ide1 = e1! The second column
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of I should be e2 and so on. So, in the 3× 3 case I should look like:1 0 0
0 1 0
0 0 1

 .

Exercise 4.3.6. Show that for any m × n matrix A and any n × k zero
matrix, the product A0 is the zero matrix.

4.4. Interesting things

Now, we will see some interesting things about matrix multiplication. I will
give them as exercises.

Exercise 4.4.1. Consider the matrices

A =

[
1 0
0 0

]
and B =

[
0 0
0 1

]
.

1. Is A the zero matrix?

2. Is B the zero matrix?

3. Compute AB. What do you observe? Does this happen in multiplica-
tion of real numbers?

Remark 4.4.2. How did you do the matrix multiplication? Did you multiply
the matrix A with the columns of B and used ideas from matrix-vector
equation from Chapter 2, or did you use the “ijth entry of the product AB
is given by the ith row of A and jth column of B” principle? I think using the
first idea is much quicker here, it immediately tells me that the first column
of AB is zero and the second column of AB is equal to ‘the second column
of A’.

Exercise 4.4.3. Consider the matrices

A =

[
1 0
0 0

]
, B =

[
0 1
0 0

]
and C =

[
0 1
0 1

]
.
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1. Is A the zero matrix, is it the identity matrix?

2. Is B the zero matrix, is it the identity matrix?

3. Compute AB and compute BA. Write two observations.

4. Are B and C equal?

5. Compute AC and compare it with AB.

Exercise 4.4.4. Let A be the 2 × 2 matrix whose first column is zero and
whose second column is e1.

1. Is A the zero matrix?

2. Compute A2.

3. Write a one sentence slogan for your observation.

Exercise 4.4.5. Let A be the 3×3 matrix whose first column is zero, second
column is e1 and third column is e2.

1. Compute A2.

2. Compute A3.

Exercise 4.4.6. In at most 5 trials, try to find a 3 × 3 matrix such that
A3 6= 0 but A4 = 0. If after 5 trials you couldn’t find it, then skip the
question. We will return to this later.

Exercise 4.4.7. Show that if AB = 0, then the columns of B are in the
nullspace of A.

4.5. Transpose

The next operation we will learn is the transpose operation which is a unary
operation. While there are several reasons to learn about transpose of a
matrix, I am not sure what the best way is to motivate this, the best way to
start.
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4.6. Invertible matrices

We have seen that if we take two nonzero real numbers x and y then their
product xy is nonzero but we may take two nonzero matrices X, Y such that
XY = 0. Remember this means that the columns of Y are in the nullspace of
X. Let us rewrite the situation in real numbers in different words: If xy = 0
and x 6= 0, then we must have y = 0. Make sure that you understand this is
the exact same thing as the first sentence. Let us look further into this:

Suppose that xy = 0 and x 6= 0. Since x 6= 0, we know that there is a
number 1/x. The property of this number is that when you multiply with x,
you get 1. So, you can do:

xy = 0 =⇒ 1

x
(xy) =

1

x
0

by multiplying with 1/x on both sides and you would then get

1

x
(xy) =

1

x
0 =⇒

(
1

x
x

)
y = 0

by using associativity of multiplication for the left hand side and the fact
that when you multiply with zero, you get zero. Then, you get the next
step: (

1

x
x

)
y = 0 =⇒ 1y = 0 =⇒ y = 0

and this is because of the property of 1/x mentioned above and the fact that
when you multiply with 1, nothing changes.

Now, in the space of matrices, we do have multiplication. But we also know
that it is a little bit weird. Like you could get AB = 0 while A 6= 0 and
B 6= 0. So apparently our chain of thoughts above do not work in the case
of matrices. We do have associativity for matrix multiplication and we know
that if you multiply with the zero matrix, you would get zero. We do have a
matrix, namely the identity matrix, that acts like the number 1. So, looking
at the discussion above there is only one explanation, we may not have a
“1/A” for matrices. Later, I will warn you that this is a very bad notation
and this is the reason I put this in quotation marks.

Let us rewrite the same thing: If we had two matrices A and B such that
AB = 0 and if A had an inverse C such that CA = I, then we would have
to have

AB = 0 =⇒ C(AB) = 0 =⇒ (CA)B = C0 =⇒ IB = 0 =⇒ B = 0
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but as we have seen we may have a situation where A 6= 0, B 6= 0 and
AB = 0. What is the conclusion? Not all matrices have inverses.

Definition 4.6.1. We say that a matrix A is invertible if there exists a
matrix C such that AC = CA = I.

Now, this is a very careless definition to be honest. I did not say anything
about the sizes of these matrices. But you can see that if AC = CA, then they
both need to be square matrices. Let us actually write it as an exercise.

Exercise 4.6.2. Show that if A is an m× n matrix and C is a k × l matrix
with the property (i) AC is defined (ii) CA is defined and (iii) AC = CA,
then m = n = k = l.

Before figuring out what C looks like, let us give it a name.

Definition 4.6.3. If C is as in the previous definition, we call it an inverse
of A.

Remark 4.6.4. Here is an important detail: I used an inverse instead of the
inverse. This suggests that there may be more than one inverse. As you have
seen, matrix multiplication is different than multiplication of numbers. So,
who knows, maybe this is one of the weird things about it? Maybe there are
multiple inverses for a matrix? This is something that we need to investigate.

Theorem 4.6.5. If a matrix A is invertible, then its inverse is unique. That
is, there is only one inverse. Therefore, we can call it the inverse and denote
it by A−1.

Proof. Let us suppose that we have two matrices C and D such that

AC = CA = I and AD = DA = I.

Then, answer the following questions:

1. True or False: C = CI.

2. True or False: CI = C(AD).
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3. True or False: C(AD) = (CA)D.

4. True or False: (CA)D = ID.

5. True or False: ID = D.

If you have answered true for all of them, reading all the equations from the
top to the bottom, you will see that C = D. This shows that you can not
find two different matrices which are inverses of A.

Remark 4.6.6. We do not use the notation 1/A for matrices. Here is a rea-
son for it: If you have two matrices A,B and if you know that A is invertible,
then when you write B/A there is no way to understand whether you mean
B(1/A) or (1/A)B and as we have seen earlier, matrix multiplication is not
commutative and usually these two are different.

Now, let us figure out more about this inverse. For instance, how do you
know if it exists and if it does exist, how do you find it?

Remember when we talked about matrix multiplication, we talked about it
in detail. I did not give you a quick rule for matrix multiplication and told
you to memorize it. Instead, we went through a process to understand how
it works.

Exercise 4.6.7. Reread Section 4.2 before you continue.

Let’s say we have a square matrix A and we want to see if it has in inverse
and if it does we want to find it. In other words, we would like to solve
the equation AX = I where X is also a square matrix. Let us denote by
v1, v2, . . . , vn the columns of X. Then, if you understand Section 4.2 well
enough, you should be comfortable with the following:

AX = I ⇐⇒ Av1 = e1, Av2 = e2, . . . , Avn = en.

In other words, saying that A is invertible is equivalent to saying that for
every i = 1, . . . , n, the matrix-vector equation Ax = e1 has a solution. How
do we find this solution? Well, we make an augmented matrix [A | ei] if
you remember the first week of classes. Then, we reduce A to a reduced row
echelon form and we got it, whatever ends up on the right hand side of the
augmentation line is the solution. Cool. So, in order to find the inverse, you
should do this for all n equations above. That is, you should row reduce the
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augmentation matrices

[A | e1] , [A | e2] , . . . , [A | en].

Now, while it looks like you will have to do n row reductions, if you actually
try to do this, you will quickly realize that row reductions only depend on the
matrix A and for all of these, you will do the same row reductions. Therefore,
instead of doing n row reductions, put e1, . . . , en on the right hand side of
your augmented matrix and do all the row reductions at once.

To sum up, if you want to see if A is invertible and if you want to compute
its inverse, then you should construct the augmented matrix [A | I] and row
reduce it until your augmentation matrix turns into [I | X]. Of course, you
can not always do this (some systems are inconsistent) and then your matrix
is not invertible. In case your matrix is invertible, the matrix X you get on
the right hand side is your inverse.

Example 4.6.8. Let us illustrate these ideas on an example. Consider

A =

[
3 2
1 1

]
.

We want to find a matrix X such that AX = I. So, we want to find a, b, c, d
such that [

3 2
1 1

] [
a b
c d

]
=

[
1 0
0 1

]
.

By our definition/discussion of matrix multiplication, we should then try to
solve the two equations [

3 2
1 1

] [
a
c

]
=

[
1
0

]
[
3 2
1 1

] [
b
d

]
=

[
0
1

]
but I can do this simultaneously by constructing my augmentation matrix as[

3 2 | 1 0
1 1 | 0 1

]
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and row reducing this to[
3 2 | 1 0
1 1 | 0 1

]
→
[
3 2 | 1 0
0 1 | −1 3

]
→
[
3 0 | 3 −6
0 1 | −1 3

]
→
[
1 0 | 1 −2
0 1 | −1 3

]
So, we get that A is invertible and

A−1 =

[
1 −2
−1 3

]
.

Okay, we know when a matrix is invertible and how to find the inverse. Good.
But what do we do this information?

Let’s consider a matrix-vector equation Ax = b. Suppose that you know A is
invertible. Then, multiplying both sides on the left by A−1 you can get

Ax = b =⇒ A−1Ax = A−1b =⇒ x = A−1b.

You have a unique solution and the solution is given simply by A−1b. You can
also do the same thing in matrix equations. Suppose that there is a matrix
equation AB = C where A,B,C are square matrices. You know A−1 and
you know C. Then, by a similar argument you would get B = A−1C.

As it is our tradition, let us write down things in different words again.

Theorem 4.6.9. The following are equivalent for an n× n matrix A.

1. A is invertible.

2. For every b ∈ Rn, the equation Ax = b has a unique solution.

3. A can be row-reduced to the identity matrix.

4. Standard basis vectors e1, . . . , en can be written as a linear combination
of the columns of A.

5. Every vector in Rn can be written as a linear combination of the
columns of A.
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6. When you row reduce A to its echelon form, every column has a leading
one (a pivot entry).

7. The linear transformation x 7→ Ax is one-to-one and onto.

8. Columns of A are linearly independent.

Exercise 4.6.10. Convince yourself that all of the statements in the theorem
are equivalent.
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5. Determinant

5.1. Examples and computations

5.2. Geometric properties
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6. Exercises

You finished the first part of the course, congratulations. So far, you hope-
fully realized all the chapters were connected to each other. So, it is a good
time to stop and test your knowledge.

Exercise 6.0.1. Solve all the exercises within the sections so far.

Exercise 6.0.2. Construct a system of linear equations whose solution set
is spanned by the vector 1

2
3

 .

Explain how you determine the minimum number of equations in a system
like above.

Exercise 6.0.3. 1. Find a set of vectors which span R3.

2. Find another set of vectors which span R3.

3. Find a set of vectors which span R4 and linearly independent.

4. Find a set of vectors which span R4 and linearly dependent.

Exercise 6.0.4. Identify each of the following statements as True or False.

1. If a system of linear equations has more equations than variables, then
the system must have a unique solution.

59
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2. If a system has more variables than equations, then the system must
have infinitely many solutions.

3. Homogeneous systems are always consistent.

Exercise 6.0.5. What is a relationship between one-to-one functions and
linearly independent vectors?

Exercise 6.0.6. What is a relationship between onto functions and consis-
tency of linear systems?

Exercise 6.0.7. For each of the following, either give a numerical example
or write a paragraph explaining such a function does not exist.

1. a linear function from R5 to R3 which is onto.

2. a linear function from R5 to R4 which is one-to-one.

3. a linear function from R5 to R3 which is not onto.

4. a linear function from R4 to R5 which is onto.

5. a linear function from R4 to R5 which is one-to-one.

6. a linear function from R3 to R5 which is not one-to-one.

Exercise 6.0.8. What is a diagonal matrix and what can you say about the
product of diagonal matrices?

Exercise 6.0.9. If u, v, w ∈ Rn are linearly independent vectors, then what
can you say about u + v, u − v, v + w? Do they also have to be linearly
independent or can you choose u, v, w so that these are linearly dependent?
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Exercise 6.0.10. Consider the matrix

A =


0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4
0 0 0 0 0.


1. Compute A2, A3, . . . , A9.

2. Let

v =


2
3
1
6
2


and compute Av,A2v,A3v,A4v,A5v.

3. Let f be the polynomial function given by the rule f(x) = 2 + 3x +
x2 + 6x3 + 2x4. Compute f ′(x), f ′′(x), f ′′′(x) and a couple more.

4. Compare your answers to the previous two parts. What do you observe?

Exercise 6.0.11. Show that if A is an invertible matrix such that A2 = A+I,
then A−1 = A− I.
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Part II

Vector Spaces

63





7. Introduction to Vector
Spaces

At the beginning of these notes, we have emphasized over and over again:
we are considering the structures of addition and scalar multiplication here.
We have seen that the space Rn carries this structure. We can add vectors
and we can multiply vectors with scalars in a meaningful way. What is that
meaningful way? Well, they satisfy some rules or axioms. Addition and
scalar multiplication behave nicely on Rn.

Exercise 7.0.1. Do you remember the 8 rules we have discussed in previous
chapters? If yes, can you write them down? If not, go for a hunt and locate
those paragraphs where we discuss these 8 rules. Do not continue reading
before you do so.

The fact that we have this additional structure on Rn allows us to talk
about linear combinations of vectors, we can talk about linear independence,
we can talk about special functions which respect this extra structure. We
have observed that the solution set of a homogeneous system of equations
also inherits the structure. In this part, we will talk about abstract ideas
related to addition and scalar multiplication which allows us to do the same
thing on different landscapes.

You have actually seen one of these landscapes. Consider the space Matm×n
of m× n matrices. We know that we can add matrices and we can multiply
matrices with scalars. And in Exercise 4.1.3, you have showed that the 8
rules of addition and scalar multiplication are satisfied. Then, I can talk
about linear combination of matrices for example. Given two m×n matrices
A and B, you can make sense of something like 2A+ 3B. You have also seen
the transpose of a matrix which takes an m×n matrix A and gives an n×m
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matrix AT . Therefore, transpose defines a function:

T : Matm×n(R)→ Matn×m(R)

defined by the rule T (A) = AT . And you know from properties of transpose
that for any two m×n matrices A,B, you have (A+B)T = AT+BT which says
that this function T we just defined respects the additive structure on these
spaces. We have T (A+B) = T (A)+T (B). Similarly, we have T (cA) = cT (A)
because you know that (cA)T = cAT . Therefore taking transpose is a linear
transformation from Matm×n(R) to Matn×m(R).

Exercise 7.0.2. 1. Make sure you understand the above argument.

2. For m = 2 and n = 3, pick two m × n matrices A and B and verify
that transpose respects addition.

So, we will keep the rules of the game we played in the first part of the course
but we will change the players from now on.

7.1. Definition and Examples

In order to define a vector space, we need two operations. The first of these
operations should be a binary operation meaning that it takes two inputs
from our space and gives an output. Addition of vectors and addition of
matrices is a binary operation. You add two vectors and get a vector as a
result. You add two matrices and get a matrix as a result. We will call
this operation addition but you will see in some examples there are weird
operations which we call addition because it is a binary operation which
satisfy the rules we want. This is just a name.

The second operation should take a scalar and one input from your space
and should spit out an output from your space. We will call this operation
scalar multiplication.

Definition 7.1.1. A vector space V is a set equipped with two operations
which we call addition and scalar multiplication as above satisfying the fol-
lowing 8 axioms.

1. For every u, v, w ∈ V , we have

(u + v) + w = u + (v + w).
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2. There exists a special element, which we call the zero vector and denote
by 0, such that for every v ∈ V , we have

0 + v = v + 0 = v.

3. For every v ∈ V , there is a special element which we denote by −v such
that

v + (−v) = (−v) + v = 0

4. For every u, v ∈ V , we have

u + v = v + u.

5. For every v ∈ V , we have

1v = v.

6. For every scalar c and u, v ∈ V , we have

c(u + v) = cu + cv.

7. For every two scalars c, d and v ∈ V , we have

(c + d)v = cv + dv.

8. For every two scalars c, d and v ∈ V , we have

(cd)v = c(dv).

You can immediately observe two things: Firstly, these are very natural ax-
ioms. To be able to do some good behaving algebra these 8 rules are necessary
(sort of, but we are not doing higher level mathematics now so we can be-
lieve this). These 8 rules are exactly copied from the properties of Rn with
its usual addition and scalar multiplication. Thus, we made this definition so
that we can do things which we did with vectors in Rn. Let us see a couple
familiar examples that you have seen before.
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Example 7.1.2. Rn with usual addition and scalar multiplication is a vector
space.

Example 7.1.3. The space of matrices Matm×n(R) is a vector space.

Example 7.1.4. Consider the space of polynomials P2(R) with polynomials
of degree at most 2. Elements of this set are things of the form

a0 + a1x + a2x
2

where a0, a1, a2 are real numbers and x is a symbol. We call these things
polynomials. Note that we do not see these things as functions 1. We say
that two polynomials are equal if they have the same coefficients. We define
addition as follows:

(a0 + a1x + a2x
2) + (b0 + b1x + b2x

2) = a0 + b0 + (a1 + b1)x + (a2 + b2)x
2

and we define scalar multiplication as follows:

c(a0 + a1x + a2x
2) = ca0 + ca1x + ca2x

2.

It is then easy to show that the 8 axioms are satisfied. It is maybe worth
noting that the zero vector in this case is the zero polynomial 0 + 0x + 0x2

which we will simply denote by 0.

Exercise 7.1.5. Show that P2(R) is a vector space. That is, check all 8
axioms are satisfied.

Example 7.1.6. Let us denote by C[0, 1] the set of all continuous functions
from the closed interval [0, 1] to R. You have seen from your calculus courses
that the sum of two continuous functions is also continuous and a scalar
multiple of a continuous functions is also continuous. Therefore, we see that
addition and scalar multiplication is defined on this set naturally and it is
easy to check that this space is a vector space.
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Remark 7.1.7. While we will see this in the upcoming chapters, some people
are quick to see that the addition and scalar multiplication in P2(R) is exactly
like the addition and scalar multiplication in R3. One can actually identify
a polynomial a0 + a1x + a2x

2 with the vectora0a1
a2

 .

However, the space of continuous functions is a little bit more interesting.
We will see that this space is an infinite dimensional vector space.

Remark 7.1.8. Similar to the space of continuous functions, you can con-
sider the space of all differentiable functions, the space of all integrable func-
tions, the space of all functions which have a Taylor series expansion at 0
and so on. There is a lot of linear algebra structure inside calculus, too!

Example 7.1.9. Next, let us see a more exotic example. Consider the set

V = {x ∈ R : x > 0}

of all positive real numbers. On V define addition as multiplication and
scalar multiplication as taking powers. Since this is a little bit confusing, let
us denote addition by ⊕ and scalar multiplication by ⊗. Then, x ⊕ y = xy
and c ⊗ x = xc for every x, y ∈ V and c ∈ R. For instance, 2 ⊕ 3 = 6 and
3⊗ 5 = 35. With these operations V becomes a vector space.

Exercise 7.1.10. Firstly, make sure that you understand this example.
Show that the set of positive real numbers equipped with the operations
in the previous example becomes a vector space. What is the zero vector?

Now, let us see a non-example.

Exercise 7.1.11. Consider the set V = {(x, y) : x, y ∈ R}, the set of points
in the plane. Define addition of two points as the midpoint of the line seg-
ment between them and scalar multiplication as usual coordinatewise scalar
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multiplication. That is,

(a, b)⊕ (x, y) =

(
a + x

2
,
b + y

2

)
,

c(x, y) = (cx, cy).

Now, consider the following two sentences:

First Sentence. For every P ∈ V , there is a Q such that P +Q = Q+P =
P .

Second Sentence. There is an element Q such that for every P ∈ V we
have P + Q = Q + P = P .

And solve the following questions.

1. Compute (1, 2)⊕ (3, 4).

2. Is the first sentence true?

3. Is the second sentence true?

4. Does V have a zero vector?

5. Is V a vector space with these operations?

7.2. Linear combinations

Whenever we have addition and scalar multiplication, we can talk about
linear combinations. Note that we do not even need to have a vector space
structure to do this. A linear combination of vectors v1, . . . , vn is simply a
vector you can create using these vectors and allowed operations: addition
and scalar multiplication. We have already seen this notion when we were
dealing with vectors in Rn. Please go and read Definition 2.2.9. You will
notice that I intentionally used a general language there. I did not say
anything about Rn. So, the same definition works for any vector space.

Therefore, the definition of span of vectors is also the same as before. The
span of vectors v1, v2, . . . , vn is the set of all linear combinations of these
vectors. Hence, a vector belongs to the span of v1, . . . , vn if and only if
you can create that vector using addition and scalar multiplication from the
original vectors v1, . . . , vn.
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Example 7.2.1. Consider the two polynomials p = 1 + x + x2 and q =
2 + 3x + 4x2. Suppose somebody asks you “Is 3 + 2x2 in the span of p and
q?” What do you do?

Well, as we have always said, this is a language problem. The difficulty here
(if there is any difficulty) is to translate this question into a language that
we can already speak with. And luckily, we can do this by just answering
questions of the form “What does this mean”?

• Is 3 + 2x2 in the span of p and q? What does this mean?

• It means “can we write 3 + 2x2 as a linear combination of p and q?”
What does this mean?

• It means “can we find scalars a, b such that 3 + 2x2 = ap+ bq?” At this
point, let us put what p and q are.

• The question is now “can we find scalars a, b such that

a(1 + x + x2) + b(2 + 3x + 4x2) = 3 + 2x2 ”

And what does this mean?

• This means “can we find scalars a, b such that

(a + 2b) + (a + 3b)x + (a + 4b)x2 = 3 + 2x2 ”

and again what does this mean?

• It means “can we find a, b such that

a + 2b = 3

a + 3b = 0

a + 4b = 2 ”

• I think you already have seen what happened here. But let us write it
down: Is the system

a + 2b = 3

a + 3b = 0

a + 4b = 2

consistent?

So, we did ask a question about polynomials and we have realized that we
can translate this problem to a linear algebra problem.
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Remark 7.2.2. It is important to note that you should always go step by
step. What does this mean? What is this question trying to ask me? Can
I turn this problem into something that I already know? As Ali Nesin - the
founder of the Nesin Math Village - says: Do not try to solve the problem.
Try to understand the problem. Once you understand the problem, the
answer jumps out of the page. And we have an example of this philosophy
in the previous example. At this point, you know how to check if a system is
consistent or not, you know this from the first week of this course. And the
key point here is to understand that the question is asking you this. Once
you figure that out, solving the question is easy. As you see, I did not even
finish solving the problem.

Exercise 7.2.3. Consider the three functions f, g, h in the space C[0, 1]
given by the rules: f(x) = 1 (this is a constant function), g(x) = sin2 x and
h(x) = cos2 x. Is f in the span of f, g, h? (The definition for C[0, 1] was
given in the previous section).

Remark 7.2.4. In a vector space, we know how to add two things. As a
result, we can add three things by first adding the first two and then adding
the third one. So, v1 + v2 + v3 = (v1 + v2) + v3. (Remember associativity
rule). Then, I know that I can add four things similarly. In a similar way, I
can add one hundred million vectors together. But.. I do not know how to
add “infinitely many vectors”.

So, while I know that the exponential function has a power series expansion

ex = 1 + x +
x2

2!
+

x3

3!
+ . . .

this does not tell me that

ex ∈ span{1, x, x2, . . .}

inside the space of continuous functions. Because this is an infinite sum. This
will be important for those of you who will deal with infinite dimensional
spaces in the future.
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7.3. Subspaces

For me a space is a set with some extra structure on it. In our case, the
extra structure is addition and scalar multiplication. This is what we con-
sider and what linear algebra is all about. If we had other goals, we could
have considered only an additive structure. Or maybe only a multiplicative
structure, who knows.

When you have a space, you don’t only think about elements. You also care
about the extra structure that is carried. Therefore, when you think about
things related to this space, you want to make sure that the structure is
preserved. You have seen examples of it: a linear transformation was just
a special type of function which respects addition and scalar multiplication,
you have seen that you can still do addition and scalar multiplication on the
solution set of a homogeneous system.

I think this is enough motivation to make the definition.

Definition 7.3.1. Let V be a vector space. A subset W ⊂ V is called a
subvectorspace or a subspace if W is also a vector space with the addition
and scalar multiplication defined for V .

Quickly, we make some remarks.

Remark 7.3.2. If you look at the definition, it looks like you have to check all
the eight axioms of a vector space for W . However, most of these axioms are
satisfied because elements of W already live in the vector space V (because W
is a subset of V ). For example, you do not need to check if the associativity
axiom w1 + (w2 +w3) = (w1 +w2) +w3 for every three vectors in W because
these vectors live in V and you know that this property holds for these vectors
in V .

Motivated by this remark, we have the following subspace test.

Proposition 7.3.3. Let V be a vector space and W be a subset of V . In
order to check if W is a subspace or not, it is enough (and necessary) to
check only the following three:

1. The zero vector of V is inside W .

2. For every w1, w2 ∈ W , we have w1 + w2 ∈ W .

3. For every scalar c and vector w ∈ W , we have cw ∈ W .
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The first one here guarantees (sort of) that the space is not empty. The
last two say that you can do addition and scalar multiplication in W without
leaving it.

Example 7.3.4. You have seen that the space all functions from real num-
bers to real numbers form a vector space under usual addition and scalar
multiplication. The zero vector in this space is the (constant) zero function -
the function which takes every input to zero. Now, we can say that the sub-
set of this space consisting of all continuous functions is a subspace: indeed,
you learn from calculus 1 that

1. The constant zero function is continuous,

2. The sum of two continuous functions is again continuous,

3. If you multiply a continuous function with a scalar, you will get another
continuous function.

Example 7.3.5. The same arguments from the previous example work for
differentiable functions. So, the set of differentiable functions is a subspace
of the set of all functions from real numbers to real numbers. It is also a
subspace of the set of all continuous functions from real numbers to real
numbers because you know that differentiable functions are continuous.

The previous two examples were your first interactions with linear algebra
back in your calculus days. The next example was your first interaction with
subspaces in this course.

Example 7.3.6. The solution set of a homogeneous linear system with n
variables is a subspace of Rn.

Example 7.3.7. Given a vector space V and vectors v1, . . . , vn in V , the
span of v1, . . . , vn is a subspace of V . Indeed,

1. The zero vector belongs to the span because it can be written as a
linear combination of v1, . . . , vn as

0 = 0v1 + . . . + 0vn,
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2. The sum of two linear combinations is again a linear combination:

a1v1 + . . . + anvn + b1v1 + . . . + bnvn = (a1 + b1)v1 + . . . + (an + bn)vn.

3. For a scalar c and a linear combination a1v1 + . . . + anvn, the product

c(a1v1 + . . . + anvn) = ca1v1 + . . . + canvn

is again a linear combination.

The next exercise is very standard.

Exercise 7.3.8. Let f : Rn → Rm be a linear transformation. Show that

1. The kernel of f is a subspace of Rn,

2. The image of f is a subspace of Rm.

Exercise 7.3.9. Consider the space P3(R) of all polynomials with real co-
efficients with degree at most three. Which one of the following sets are
subspaces?

1. the set of polynomials with degree at most 1,

2. the set of polynomials with degree exactly 1,

3. the set of polynomials which do not have an x2 term (the coefficient of
x2 is zero).

Considering the same space P3(R), give two subspace examples.

Exercise 7.3.10. Consider the following subsets of Mat2×2(R) and deter-
mine which ones are subspaces:

1. The set of matrices who are equal to their own transpose.

2. The set of matrices who are equal to the negative of their transpose.

3. The set of diagonal matrices.

4. The set of upper triangular matrices.
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5. The set of matrices whose diagonal entries sum up to zero.

6. The set of matrices whose top right entry is zero.

7. The set of invertible matrices.

8. The set of noninvertible matrices.



8. Basis and dimension

In the previous chapter, we have learned about vector spaces and we have
seen that once we have the definition of vector spaces, we can talk about
linear combinations.

Here is a very natural question, then: if I give you bunch of vectors, what
other vectors can you create from them? This was the notion of span. You
have seen that the span of a set of vectors is a subspace.

The next natural question is: given a subspace (or a vector sapce) can you
find a set of vectors which span that subspace? This is the topic of the first
section of this chapter.

We will then continue with the question: how can you make sure that you
can choose as few vectors as possible to span the entire space? This is the
second section.

This will bring us to the third section: the notion of basis and dimen-
sion.

8.1. Spanning sets

Suppose that you give a subspace to me: a subspace S of a vector space V .
Then, I can write any element x ∈ S as x = 1x. Hence, x can be written as
a linear combination of elements in S.

Well, that was too easy, but we just proved that every subspace has a span-
ning set. So, if somebody asks you the following question: I give you a
subspace, can you give me a set of vectors from which you can create the
entire subspace?, you can tell them Yes, I can give you the entire thing back.
Well, of course, this solves the problem but as you can imagine it is overkill
and not what we are after. We want to make our lives easy by just con-
sidering a small amount of vectors and create every other vector by using

77
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them.

8.2. Linear independence

8.3. Basis and dimension



9. Linear transformations

9.1. Definition and examples

9.2. Important properties

9.3. Kernel of a linear transformation

9.4. Image of a linear transformation

9.5. Rank-Nullity theorem
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10. Matrix representation of
linear transformations

10.1. Isomorphisms and coordinate vectors

10.2. Matrix of a linear transformation - the recipe

10.3. Matrix of a linear transformation - properties

10.4. Change of basis
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Part III

Jordan Canonical Form
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11. Eigenthings

11.1. Ode to diagonal matrices

11.2. How to find nice matrix representations

11.3. Eigenvectors and eigenvalues
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11.5. Diagonalization
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